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Abstract POSS/PMMA composite was synthesized by atom transfer radical

polymerization (ATRP) at 110 �C using commercial POSSCl as an initiator and

CuCl/2,20-bipyridine as catalyst system. The structures of POSS/PMMA and POSSCl

were characterized by Fourier transfer infrared spectroscopy, Nuclear magnetic res-

onance spectroscopy, Ger permeation chromatography, X-ray diffraction and X-ray

photoelectron spectroscopy, which confirmed that Si–Cl bond on POSS cage could

successfully initiate the ATRP of methyl methacrylate, so there is only one POSS unit

in a PMMA chain. The thermal properties of POSS/PMMA were investigated by

Differential scanning calorimetry and Thermogravimetric analysis, the results show

that the incorporation of POSS cage results in the enhancement of the glass transition

temperature and the decomposition temperature of PMMA, which is mainly attributed

to the mono-dispersion of POSS in PMMA matrix at molecular lever.

Keywords Polyhedral oligomeric silsesquioxane (POSS) �
Atom transfer radical polymerization (ATRP) � Poly(methyl methacrylate) �
Composites

Introduction

Recently, more and more interests are focused on the synthesis of inorganic-organic

hybrid polymers, especially on the polymers containing polyhedral oligomeric

silsequioxane (POSS) [1–5]. With the incorporation of POSS groups, thermal

stability and mechanical properties of the polymers can be dramatically improved

due to the silica and oxygen framework of POSS unit [6–10].
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Various processes have been employed to prepare polymers containing POSS,

which can be classified into physical blend and chemical reaction. The organic

groups attached on POSS cage enhance the compatibility with polymers. POSS has

been blended with polycarbonate, poly(methyl methacrylate), cyanate ester and so

on [11–13]. Whereas, at high POSS content ([10%), the aggregation of POSS

molecule can be found and POSS molecule cannot be dispersed evenly, which may

reduce the improvement in thermal and mechanical properties [14, 15]. To the best

of our knowledge, the process of chemical reaction can overcome this disadvantage,

such as radical polymerization and ring-open polymerization. Silverstein [16]

reported the synthesis of POSS/PMMA nanocomposite via free radical solution

polymerization, and pointed out that POSS enhanced the thermal properties of

nanocomposite, that is the decomposition temperature was increased and the mass

loss was reduced.

In the pursuit to understand the effect of POSS in polymeric hybrids, it is

necessary to synthesize well-defined polymers containing POSS with predetermined

molecular weight, controlled architectures and narrow polydispersity. Controlled/

living radical polymerization (CRP) techniques can synthesize tail-made polymers

and meet the above requirements [17–19]. Compared to other CRP techniques such

as reversible addition-fragmentation termination (RAFT) and nitroxide mediated

polymerizations (NMP), ATRP has been proved as the most robust and efficient tool

for preparation of well-controlled macromolecules in terms of the choice of

functional monomers, polymerization temperature (100 �C or less), either aqueous

or organic solvents [20–24]. Matyjaszewski and Mather prepared well-defined ABA

copolymers possessing a rubbery poly (n-butyl acrylate) (pBA) middle segment and

glassy p(MA-POSS) outer segments by ATRP which was initiated by C–Br bond,

and MA-POSS was used as a monomer which possessed C=C bond [25]. Recently,

Hu found that Si–Cl bond, CuCl and N, N, N0, N00, N000 pentamethyldiethyltriamine

could act as a new initiating system for the ATRP of MMA and St [26]. However,

the ATRP of MMA initiated by Si–Cl bond on POSS cage has not been reported,

and study on this polymerization should be useful for the improvement of PMMA

properties.

In this paper, we attempted to synthesize POSS/PMMA composite using Si–Cl

bond on monofunctional POSS as ATRP initiator, and NMR, XPS, XRD and GPC

were used to characterize the product, the result demonstrated that the degree of

polymerization was well controlled and mono-dispersion of POSS in PMMA matrix

was achieved. The thermal properties of POSS/PMMA composite were investigated

through DSC and TGA, and the results showed that the Td and Tg of POSS/PMMA

composite were increased.

Experimental

Materials

1-Chlorine-3,5,7,9,11,13,15-cyclopentyl polyhendral oligomeric silsesquioxane

(POSS, Hybrid Co.) was used as receive. Methyl methacrylate (MMA, Shanghai
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Lingfeng Chemical Reagents Co Ltd, China) was passed through a column with

activated Al2O3 (neutral) in order to remove the inhibitor, and then distilled under

vacuum, stored in refrigerator. Cuprous chloride (CuCl) obtained from Shanghai

First Chemical Work of reagents was purified in acetic acid, washed with ethanol

and dried under vacuum. 2,20-Bipyridine (Bpy) was purified and prepared according

to previously reported procedures [27]. Toluene was distilled from calcium hydride

(CaH2) before using. Other reagents were used as received without further

purification.

Synthesis of POSS/PMMA composite

The ATRP of methyl methacrylate was carried out using Si–Cl bond on POSS cage

as an initiation group. POSSCl (0.10 g, 0.10 mmol), CuCl (0.010 g, 0.10 mmol),

bpy (0.047 g, 0.30 mmol), MMA (10 mL, 100 mmol) and toluene (10 mL) were

added into a flask equipped with magnetic stir bar. The system was evacuated twice,

filled with dry nitrogen and placed in an oil bath warmed at 110 �C. After 20 h, the

mixture was diluted with THF, filtered over alumina column to remove the catalyst

and poured into tenfold methanol. The product was obtained after filtration and

drying at 50 �C in a vacuum overnight.

Instruments

FTIR was carried out on a Bruker VECTOR-22 IR spectrometer using spectroscopic

grade KBr powder at room temperature. The 1H NMR spectra were recorded on a

Bruker AVAN300 CE from Switzerland at 297.7 K with the solvent CDCl3 and

tetramethylsilane (TMS) as a standard.

The weight-average (Mw) and number-average (Mn) molecular weights were

measured on a Waters 515 gel permeation chromatograph (GPC) using polystyrene

as standards and THF (1.0 ml/min) as the elution. XRD spectra were collected on an

M18XHF-SPA X-ray diffraction instrument from Mac Science Co. (Japan) with Cu

Ka radiation (k = 1.5406 Å) at the scanning rate of 0.1 �C/s between 2h = 5�–40�.

X-ray photoelectron spectrum was recorded on Thermo ESCALAB-250 system

fitted with a micro-focused, monochromatic Al Ka X-ray source (500 lm spot size)

and the pass energy was set at 70.0 eV. The energy step size and number of energy

sizes are 1.0 and 1,101 eV, respectively.

DSC analyses were determined on a Diamond DSC PerkinElmer. The samples

were heated from 35 to 150 �C at the heating rate of 60 �C/min and then held at

150 �C for 2 min. The samples were cooled from 150 to 35 �C at the rate of 60 �C/

min. Finally the samples were heated from 35 to 150 �C at the heating rate of 10 �C/

min. The glass transition temperature (Tg) was calculated at the second circle of

heating. Thermogravimetric analysis (TGA) was recorded on a Diamond TG

PerkinElmer with the heating rate of 10 �C/min from 25 to 600 �C. The thermal

degradation temperature (Td) is defined as the temperature at 5% weight loss of the

sample.
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Results and discussion

Synthesis and characterization of POSS/PMMA composite

When MMA was initiated by POSSCl with CuCl/Bpy as catalysts at 110 �C, a novel

composite, POSS/PMMA was prepared and the mono-dispersion of POSS in

PMMA matrix was achieved (Scheme 1).

Figure 1 shows the FTIR spectra of pure POSS and POSS/PMMA composite. In

Fig. 1a, there is a strong absorption band at 1,109 cm-1 which is attributed to the

Si–O–Si stretching vibration band of POSS cage and Si–Cl stretching vibration peak

is at 509 cm-1. The peaks at 2,952 and 2,868 cm-1 refer to the non-activity

cyclopentyl on POSS cage. The FTIR spectrum of POSS/PMMA (Fig. 1b)

possesses characteristic absorption band of PMMA at 1,730 and 1,147 cm-1,

which are assigned to the carbonyl stretching vibration and C–O–C stretching

vibration, respectively. The characteristic stretching vibration band of Si–O–Si of
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Fig. 1 FTIR spectra of pure POSS (a) and POSS/PMMA composite (b)
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POSS cage at 1,109 cm-1 is partially overlapped with the peak of C–O–C in

PMMA matrix [28]. Compared to the FTIR spectrum of pure POSS, the existence of

the peak at 2,952 cm–1 and the disappearance of the peak at 509 cm–1 are the

powerful evidence of polymerization. So we made the conclusion that POSS may be

incorporated in PMMA chains.

To confirm that POSS is chemically bonded with PMMA chains in POSS/PMMA

composite, 1H NMR spectra of pure POSS (Fig. 2a) and POSS/PMMA composite

(Fig. 2b) are introduced. For pure POSS, the signal at 0.83 ppm is assigned to the

proton in the methine of cyclopentyl; the signals at 1.58 and 1.33 ppm are ascribed

to the proton in the methylene of cyclopentyl. POSS/PMMA composite displays a

different spectrum to that of pure POSS. The signal at 3.60 ppm is attributed to the

methyl proton connected to ester group, and the proton resonance absorption of

methylene is at 1.74 ppm and substituted methyl groups in PMMA matrix are at

0.77 and 0.95 ppm [28]. After comparison, the proton resonance absorptions of

cyclopentyl are still existent, so it can be inferred that POSS cage have been

chemically incorporated into PMMA matrix.

Figure 3 presents the GPC trace of POSS/PMMA composite, and the curve is

symmetrical and monomodal. The weight-average molecular weight (Mw), number-

average molecular weight (Mn) and PDI (Mw/Mn) are 1.50 9 105, 1.10 9 105 and

1.36, respectively. The results of GPC analysis explains that the structure and

molecular weight of POSS/PMMA composite were well controlled.

The X-ray photoelectron spectra of pure POSS and POSS/PMMA composite are

show in Fig. 4. The characteristic peaks of Si 2p and Si 2s centered at 103 and

154 eV manifest the presence of Si element on the surface of POSS/PMMA

composite [29]. Moreover, the intensity of the peaks of Si element become weaker

after PMMA is attached to POSS cage; that is to say, PMMA has been successfully

grafted on to the POSS cage. In Fig. 4a, the peak at 200 eV is ascribed to the
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Fig. 2 The 1H NMR spectra of pure POSS (a) and POSS/PMMA composite (b)
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presence of Cl element of POSS cage. However, the characteristic peak of Cl 2p in

POSS/PMMA isn’t detected, because of the low content of Cl element.

In order to prove the initiation of Si–Cl bond on POSS cage, Fig. 5 shows the

XPS spectra of Si 2p of POSS and POSS/PMMA composite. In Fig. 5a, there are

two different types of Si 2p curves centered at 104.7 and 102.5 eV. The former is

attributed to the Si linked to the chlorine, whereas the latter is attributed to the Si

linked to cyclopentyl, and the ratio of the two peaks is about 1:7. Figure 5b presents

the symmetrical peak of Si 2p centered at 102.3 eV [30]. Form the XPS

measurement, we found that the Si–Cl bond initiate the ATRP of MMA. So

according to theory of ATRP, there is only one POSS cage in a PMMA chain.

The X-ray diffraction measurement between 5� and 40� is employed to

investigate the dispersion of POSS in PMMA in Fig. 6. There are five strong

reflections at 2h = 8.2�, 11.0�, 11.8�, 18.5� and 24.5� in Fig. 6a, corresponding to

d-spacing of 10.6, 7.4, 7.0, 4.7 and 3.5 Å, respectively, which accord well with the
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Fig. 3 GPC trace of POSS/
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Fig. 4 XPS survey spectra of pure POSS (a) and POSS/PMMA composite (b)
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eference [31, 32]. And the reflection at 2h = 8.2� whose d-spacing is 10.6 Å is for

the size of POSS molecules. All diffraction peaks indicate the rhombohedral crystal

structure of POSS molecules. However, in Fig. 6b, there is a ruleless curve resulting

from the diffuse amorphous PMMA chains, and no characteristic diffraction peaks

of POSS cage is found, which shows that POSS molecule have been evenly

dispersed in polymer matrix at molecular lever and no aggregation of POSS

molecular is observed [33].

Thermal properties of POSS/PMMA composite

Previous studies on the thermal properties of POSS/polymer reveal the enhancement

of the Tg and Td after the incorporation of POSS into polymer matrix. In our work,

PMMA was synthesized for comparison using 1-chlorobutane as initiator under the
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identical reaction parameters as the synthesis of POSS/PMMA composite, and the

Mn and Mw/Mn of pure PMMA is 1.20 9 105 and 1.30.

Figure 7 shows the DSC thermograms of pure PMMA and POSS/PMMA

composite. Pure PMMA has a Tg at 106 �C, after the POSS is chemical bonded with

PMMA, the Tg of POSS/PMMA composite increases to 120 �C that is much higher

than the pure PMMA. The enhancement of Tg due to the rigid nature of POSS cage

which has the Si–O–Si framework, and a typical polymer chain segment from vinyl

type monomer is about 2–5 Å while the diameter of POSS moiety is about 5–25 Å,

hence, it can imply that the POSS moiety may dominate the movement of the local

chain of the polymer [34].
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Fig. 7 DSC thermograms of PMMA (a) and POSS/PMMA composite (b)
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Figure 8 gives the TGA curves of POSS/PMMA and pure PMMA under nitrogen

atmosphere, and the Td of POSS/PMMA composite is 302 �C which is 16 �C higher

than that of the pure PMMA. When the temperature is increased to 430 �C, the pure

PMMA is evaporated completely, but there is 2.0% of POSS/PMMA composite still

remaining which refers to inorganic POSS core. So the POSS content of POSS/

PMMA composite is 2.0 wt.%. The result further confirms that the incorporation of

POSS enhances the thermal stability of PMMA which is consistent with the result of

DSC analysis.

Conclusions

In this work, the mono-dispersed POSS/PMMA composite was successfully

synthesized and characterized via ATRP using the Si–Cl bond on POSS cage as

initiator agent. The structures of pure POSS and POSS/PMMA composite were

investigated by means of FTIR and 1H NMR. The surface properties of POSS/

PMMA was investigated by XPS, and revealed the initiation from the chlorine

attached on POSSS. GPC data showed the low PDI of POSS/PMMA which is

consistent with the nature of ATRP. XRD experiment indicated that POSS was

dispersed evenly in PMMA matrix at molecule level. The results of DSC and TGA

shown that the Tg and Td of PMMA are enhanced after the incorporation of POSS,

which is mainly attributed to uniform dispersion of POSS cage that has the

inorganic framework. In addition, the POSS content of the composite reached 2.0

wt.% obtained from the TGA curves.
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